Endogenous Hydrogen Sulfide Enhances Carotid Sinus Baroreceptor Sensitivity by Activating the Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1) Channel
نویسندگان
چکیده
BACKGROUND We aimed to investigate the regulatory effects of hydrogen sulfide (H2S) on carotid sinus baroreceptor sensitivity and its mechanisms. METHODS AND RESULTS Male Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) were used in the experiment and were given an H2S donor or a cystathionine-β-synthase inhibitor, hydroxylamine, for 8 weeks. Systolic blood pressure and the cystathionine-β-synthase/H2S pathway in carotid sinus were detected. Carotid sinus baroreceptor sensitivity and the functional curve of the carotid baroreceptor were analyzed using the isolated carotid sinus perfusion technique. Effects of H2S on transient receptor potential cation channel subfamily V member 1 (TRPV1) expression and S-sulfhydration were detected. In SHRs, systolic blood pressure was markedly increased, but the cystathionine-β-synthase/H2S pathway in the carotid sinus was downregulated in comparison to that of Wistar-Kyoto rats. Carotid sinus baroreceptor sensitivity in SHRs was reduced, demonstrated by the right and upward shift of the functional curve of the carotid baroreceptor. Meanwhile, the downregulation of TRPV1 protein was demonstrated in the carotid sinus; however, H2S reduced systolic blood pressure but enhanced carotid sinus baroreceptor sensitivity in SHRs, along with TRPV1 upregulation in the carotid sinus. In contrast, hydroxylamine significantly increased the systolic blood pressure of Wistar-Kyoto rats, along with decreased carotid sinus baroreceptor sensitivity and reduced TRPV1 protein expression in the carotid sinus. Furthermore, H2S-induced enhancement of carotid sinus baroreceptor sensitivity of SHRs could be amplified by capsaicin but reduced by capsazepine. Moreover, H2S facilitated S-sulfhydration of TRPV1 protein in the carotid sinus of SHRs and Wistar-Kyoto rats. CONCLUSIONS H2S regulated blood pressure via an increase in TRPV1 protein expression and its activity to enhance carotid sinus baroreceptor sensitivity.
منابع مشابه
Activation of TRPV1 and TRPA1 by black pepper components.
We searched in this study for novel agonists of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in pepper, focusing attention on 19 compounds contained in black pepper. Almost all the compounds in HEK cells heterogeneously expressed TRPV1 or TRPA1, increased the intracellular Ca(2+) concent...
متن کاملTRPV1: Turning up the heat on intestinal tumorigenesis
TRP channels are associated with the development and progression of cancer but their precise molecular roles in these processes are unclear. Recently, we showed that the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) ion channel is part of a negative feedback loop downstream of epidermal growth factor receptor signaling that suppresses intestinal tumorigenesis.
متن کاملGalangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1.
We investigated the activation of transient receptor potential cation channel (TRP) subfamily V, member 1 (TRPV1) and TRP subfamily A, member 1 (TRPA1) by 1'-acetoxychavicol acetate (ACA), the main pungent component in galangal. ACA did not activate TRPV1-expressing human embryonic kidney (HEK) cells, but strongly activated TRPA1-expressing HEK cells. ACA was more potent than allyl isothiocyana...
متن کاملPharmacology of vanilloid transient receptor potential cation channels.
Depending on their primary structure, the 28 mammalian transient receptor potential (TRP) cation channels identified so far can be sorted into 6 subfamilies: TRPC ("Canonical"), TRPV ("Vanilloid"), TRPM ("Melastatin"), TRPP ("Polycystin"), TRPML ("Mucolipin"), and TRPA ("Ankyrin"). The TRPV subfamily (vanilloid receptors) comprises channels critically involved in nociception and thermosensing (...
متن کاملActivation of rat transient receptor potential cation channel subfamily V member 1 channels by 2-aminoethoxydiphenyl borate
BACKGROUND The transient receptor potential cation channel subfamily V member 1 (TRPV1) channel has been proved to be a molecular integrator of inflammatory pain sensation. 2-Aminoethoxydiphenyl borate (2-APB) and its analogs have been noticed as attractive candidates for the development of a selective TRPV1 agonist and/or antagonist. However, selectivity and effectiveness, species dependence, ...
متن کامل